An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics
نویسندگان
چکیده
In this paper, we use finite element methods to simulate the hydrodynamical systems governing the motions of nematic liquid crystals in a bounded domain Ω. We reformulate the original model in the weak form which is consistent with the continuous dissipative energy law for the flow and director fields in W(Ω) (σ > 0 is an arbitrarily small number). This enables us to use convenient conformal C0 finite elements in solving the problem. Moreover, a discrete energy law is derived for a modified midpoint time discretization scheme. A fixed iterative method is used to solve the resulted nonlinear system so that a matrix free time evolution may be achieved and velocity and director variables may be solved separately. A number of hydrodynamical liquid crystal examples are computed to demonstrate the effects of the parameters and the performance of the method.
منابع مشابه
An Energy-law Preserving Scheme and C0 Finite Element Methods for Singularity Dynamics of Liquid Crystal Flows
Liquid crystal flow model is a coupling between orientation (director field) of liquid crystal molecules and a flow field. The model is also related to a phase field model of multiphase flows and to microfluidics device. It is crucial to preserve the energy laws of the hydrodynamical system in numerical simulation of liquid crystal flows, especially when orientation singularities are involved. ...
متن کاملEnergy law preserving C0 finite element schemes for phase field models in two-phase flow computations
We use the idea in [33] to develop the energy law preserving method and compute the diffusive interface (phase-field) models of Allen-Cahn and Cahn-Hilliard type, respectively, governing the motion of two-phase incompressible flows. We discretize these two models using a C0 finite element in space and a modified midpoint scheme in time. To increase the stability in the pressure variable we trea...
متن کاملA numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law
In this paper, we investigate numerically a diffuse interface model for the NavierStokes equation with fluid-fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preservi...
متن کاملThe Performance of an Hexahedron C* Element in Finite Element Analysis
The performance of an 8-noded hexahedron C1* element in elasticity is investigated. Three translational displacements and their derivatives as strain in each direction are considered as degrees of freedom (d.o.f.’s) at each node. The geometric mapping is enforced using a C0 element with no derivative as nodal d.o.f.’s . The stiffness matrix of the element is also computed using a transformation...
متن کاملAn Efficient Co Finite Element Approach for Bending Analysis of Functionally Graded Ceramic-Metal Skew Shell Panels
In this article, the prominence has been given to study the influence of skew angle on bending response of functionally graded material shell panels under thermo-mechanical environment. Derivation of governing equations is based on the Reddy’s higher-order shear deformation theory and Sander’s kinematic equations. To circumvent the problem of C1 continuity requirement coupled with the finite el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2007